5,609 research outputs found

    The Case for a Progressive Tax: From Basic Research to Policy Recommendations

    Get PDF
    This paper presents the case for tax progressivity based on recent results in optimal tax theory. We consider the optimal progressivity of earnings taxation and whether capital income should be taxed. We critically discuss the academic research on these topics and when and how the results can be used for policy recommendations. We argue that a result from basic research is relevant for policy only if (a) it is based on economic mechanisms that are empirically relevant and first order to the problem, (b) it is reasonably robust to changes in the modeling assumptions, (c) the policy prescription is implementable (i.e., is socially acceptable and is not too complex). We obtain three policy recommendations from basic research that satisfy these criteria reasonably well. First, very high earners should be subject to high and rising marginal tax rates on earnings. Second, low income families should be encouraged to work with earnings subsidies, which should then be phased-out with high implicit marginal tax rates. Third, capital income should be taxed. We explain why the famous zero marginal tax rate result for the top earner in the Mirrlees model and the zero capital income tax rate results of Chamley-Judd and Atkinson-Stiglitz are not policy relevant in our view.optimal taxation

    A paradox in bosonic energy computations via semidefinite programming relaxations

    Full text link
    We show that the recent hierarchy of semidefinite programming relaxations based on non-commutative polynomial optimization and reduced density matrix variational methods exhibits an interesting paradox when applied to the bosonic case: even though it can be rigorously proven that the hierarchy collapses after the first step, numerical implementations of higher order steps generate a sequence of improving lower bounds that converges to the optimal solution. We analyze this effect and compare it with similar behavior observed in implementations of semidefinite programming relaxations for commutative polynomial minimization. We conclude that the method converges due to the rounding errors occurring during the execution of the numerical program, and show that convergence is lost as soon as computer precision is incremented. We support this conclusion by proving that for any element p of a Weyl algebra which is non-negative in the Schrodinger representation there exists another element p' arbitrarily close to p that admits a sum of squares decomposition.Comment: 22 pages, 4 figure

    Importance of tetrahedral coordination for high-valent transition metal oxides: YCrO4_4 as a model system

    Full text link
    We have investigated the electronic structure of the high oxidation state material YCrO4_4 within the framework of the Zaanen-Sawatzky-Allen phase diagram. While Cr4+^{4+}-based compounds like SrCrO3_3/CaCrO3_3 and CrO2_2 can be classified as small-gap or metallic negative-charge-transfer systems, we find using photoelectron spectroscopy that YCrO4_4 is a robust insulator despite the fact that its Cr ions have an even higher formal valence state of 5+. We reveal using band structure calculations that the tetrahedral coordination of the Cr5+^{5+} ions in YCrO4_4 plays a decisive role, namely to diminish the bonding of the Cr 3d3d states with the top of the O 2p2p valence band. This finding not only explains why the charge-transfer energy remains effectively positive and the material stable, but also opens up a new route to create doped carriers with symmetries different from those of other transition-metal ions.Comment: 6 pages, 6 figure

    Utilización de métodos no paramétricos para el control de variables de confusión no observadas en estudios ecológicos de series temporales

    Get PDF

    A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates

    Get PDF
    This study presents a constitutive model for steels exhibiting SIMT, based on previous seminal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress–strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austenitic steels submitted to impact conditions. Regarding most of the works reported in the literature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008-06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates

    A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates

    Get PDF
    This study presents a constitutive model for steels exhibiting SIMT, based on previous seminal works, and the corresponding methodology to estimate their parameters. The model includes temperature effects in the phase transformation kinetics, and in the softening of each solid phase through the use of a homogenization technique. The model was validated with experimental results of dynamic tensile tests on AISI 304 sheet steel specimens, and their predictions correlate well with the experimental evidence in terms of macroscopic stress–strain curves and martensite volume fraction formed at high strain rates. The work shows the value of considering temperature effects in the modeling of metastable austenitic steels submitted to impact conditions. Regarding most of the works reported in the literature on SIMT, modeling of the martensitic transformation at high strain rates is the distinctive feature of the present paper.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008-06408) for the financial support received which allowed conducting part of this work. The authors express their thanks to Mr. Philippe and Mr. Tobisch from the company Zwick for the facilities provided to perform the tensile tests at high strain rates
    corecore